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A s smartphones get smarter by uti-
lizing new intelligence in the phone 

and the cloud, they’ll start to under-
stand our life patterns, reason about 
our health and well-being, help us navi-
gate through our day, and intervene on 
our behalf. Here, we present various 
smartphone sensing systems that we’ve 
built over the years, arguing that, even-
tually, smartphones will become cog-
nitive. First, however, we look back 
at how sensing capabilities in phones  
evolved.

CLOSE TO THE ARCTIC CIRCLE
In February 2005, Nokia brought 
together two dozen researchers from 
academia and the Nokia Research Cen-
ter to brainstorm about the future of 
sensor networks. The workshop, held 
close to the arctic circle in Kuusamo 
Finland, was organized by Henry Tirri 
(now CTO of Nokia) around the theme 
of large-scale sensor networks.

There was considerable discussion 
about how the phone could serve as a 
user interface and gateway for existing 
sensor networks. However, for many 
attendees, the workshop reoriented their 
view of future sensor networks. The view 
moved away from traditional embed-
ded sensor devices and applications,  

best typified by motes and environ-
mental monitoring, and more toward 
using the phone as a sensor in various 
applications, such as those related to 
healthcare, traf!c monitoring, or gam-
ing. The workshop led to the creation of 
the Nokia SensorPlanet Project (www.
research.nokia.com/research/projects/
sensorplanet).

It wasn’t until early 2007 that Nokia 
released a phone with an embedded 
accelerometer. Interestingly enough, 
Nokia didn’t mention the accelerom-
eter in that N95 phone or provide an 
API to access the data, because the 
accelerometer was only there for video 
stabilization and photo orientation. 
However, when Nokia’s Péter Boda 
(the SensorPlanet leader) visited Dart-
mouth College, he casually mentioned 
that the N95 included an embedded 
accelerometer—later that year, the API 
was publicly released. This, along with 
the phone’s GPS sensors, led research-
ers at Dartmouth and elsewhere to 
study and develop new phone-based 
sensing applications, such as the  
CenceMe app.1

CenceMe implements classifiers 
directly on the phone to infer the user’s 
physical activity (sitting, walking, or run-
ning) and social interaction (whether or  

not the user is having a conservation, 
for example) in real time. Then it shares 
this sensing presence with the user’s 
social network friends on Facebook. 
CenceMe, originally implemented on 
the N95 in 2007, was ported to the 
iPhone and released when the App Store 
!rst opened in 2008.

SMARTPHONE SENSING
If we fast forward to today, the rate of 
change in mobile phones has been stag-
gering. Today’s top-end smartphones 
come with 1.4-GHz quad-core proces-
sors and a growing set of inexpensive 
yet powerful embedded sensors. These 
smartphones include an accelerometer, 
a digital compass, a gyroscope, a GPS, 
quad microphones, dual cameras, near-
!eld communication, a barometer, and 
light, proximity, and temperature sen-
sors. They also have multiple radios for 
body, local, and wide area communi-
cations; 64 Gbytes of storage; and the 
touchscreen. Furthermore, application 
delivery channels, such as the App 
Store, are transforming phones into app 
phones capable of downloading myriad 
applications in an instant.

Each new smartphone release offers 
advances in sensing, computation, and 
communications—Moore’s law in its 
new multicore form keeps marching 
on. The OS wars of the desktop era are 
being revisited, with Apple’s iOS and 
Google’s Android leading the charge. 
New breakthroughs in HCI are chang-
ing how we interact with phones—just 
consider Apple’s Siri, which uses voice 
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recognition technology to answer ques-
tions, make recommendations, and 
issue requests to other services. As a 
result, smartphones represent the !rst 
truly mobile ubiquitous computing 
device.

We’ve developed several sensing 
apps that exemplify advances in mobile 
HCI and that aim to exploit big data 
to scale human-behavioral modeling.  
(A broader survey of smartphone sens-
ing appears elsewhere.1)

BeWell: A Mobile Health App
Smartphone sensing, combined with 
persuasive feedback techniques, is 
enabling a new generation of mobile 
health apps that can automatically 
monitor and promote multiple aspects 
of physical and emotional well-being. 
The BeWell app (for Androids) con-
tinuously tracks user behaviors along 
three distinct health dimensions with-
out requiring any user input—the user 
simply downloads the app and uses 

the phone as usual (see https://play.
google.com/store/apps/details?id=org.
bewellapp).

Classi!cation algorithms run directly 
on the phone to automatically infer the 
user’s sleep duration, physical activ-
ity, and social interaction. In addition 
to classifying activities that influ-
ence health, BeWell also computes  
a weighted score between 0 and 100 
for each dimension. A score of 100 
indicates that the user is matching or 
exceeding recommended guidelines 
(averaging eight hours of sleep per day, 
for example).

The user’s physical activity is classi-
!ed as walking, stationary, or running, 
and inferences are used to estimate a 
daily Metabolic Equivalent of Task 
value. We rely on the Centers for Dis-
ease Control and Prevention’s physical 
activity guidelines to parameterize the 
scoring system. Sleep monitoring esti-
mates the user’s sleep duration over a  
24-hour period without the user having 

to do anything special with the phone; 
the user simply follows his or her nor-
mal behavior at bedtime—whether 
that’s recharging the phone or leaving 
it on a table somewhere in the home. 
Our scoring system uses the guide-
lines for sleep duration provided by the 
National Sleep Foundation—too much 
or too little sleep is unhealthy and is 
thus re"ected in the score.

We detect changes in social isola-
tion based on the total duration of 
ambient speech during a day. This is 
estimated from the output of a speech/
nonspeech classi!er using the phone’s 
microphone. (Audio isn’t recorded on 
the phone or the cloud for privacy rea-
sons.) We rely on studies that connect 
social isolation and social support to 
psychological well-being, with low 
levels being linked with symptoms 
such as depression. We experimentally 
develop a scoring system using !eld 
trials to determine the typical daily 
quantities of speech encountered by 
people within the study.2 In addition 
to conversation, the social interaction 
dimension also considers the use of 
social applications on the phone (such 
as Facebook, voice calls, and email) 
when computing a composite sociabil-
ity score for the user.

BeWell can run in a stand-alone mode 
on the phone or can interwork with 
the cloud to store longitudinal data 
patterns. BeWell promotes improved 
behavioral patterns via persuasive feed-
back as part of an animated aquatic 
ecosystem rendered as an ambient 
display on the smartphone’s wall paper 
screen (see Figure 1a). The speed of 
the large orange clown fish mirrors 
the user’s activity, while the number 
of small blue !sh re"ect the user’s level 
of social interaction with other people. 
Finally, the ocean’s ambient lighting 
conditions indicate the user’s sleep 
duration the previous night. Users can 
passively glance at the visualization of 
their health dimensions and re"ect on 
how they’re doing. At any time, the user 
can also view his or her current scores 
and the increase (up arrow) or decrease 

Figure 1. The BeWell mobile health app: (a) the ambient display on the smartphone’s 
wallpaper screen and (b) the sleep, social, and activity scores.

(a) (b)
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(down arrow) from the previous com-
puted score (see Figure 1b).

The BeWell+ cloud service lets the 
user not only view his or her scores but 
also compare them with other BeWell 
users as a social network. The phone 
system sends targeted messages to users 
to encourage them to get back on track 
should the system note a low score.

Many of the challenges of building 
BeWell related to developing low-energy 
sensing capabilities, feature engineer-
ing, and the accurate classi!cation of 
health dimensions without limiting the 
phone’s battery lifetime or usability.

WalkSafe: Pedestrian Safety App
Research in social science has shown 
that mobile-phone conversations dis-
tract users, affecting pedestrian safety. 
For example, a mobile-phone user 
deep in conversation while crossing 
a street is generally more at risk than 
other pedestrians not engaged in such 
behavior.3 We developed WalkSafe, 
an Android app for people who walk  
and talk.4

WalkSafe uses the smartphone’s back 
camera to detect vehicles approaching 
the user, alerting the user of any poten-
tially unsafe situations. More specifically, 
WalkSafe uses machine-learning algo-
rithms implemented on the phone to 
detect moving vehicles. It also exploits 

phone APIs to save energy by running 
the vehicle-detection algorithm only 
during active calls.

The WalkSafe app offers real-time 
detection of the front and back views of 
cars, noting when a car is approaching 
or moving away from the user, respec-
tively (see Figure 2). It alerts the user 
using sound and phone vibration.

The core WalkSafe car-detection tech-
nology is based on image-recognition 
algorithms. Image recognition is a com-
putationally intensive process that, if not 
carefully designed, can easily drain the 
smartphone’s computational resources 
and batteries. To address this, WalkSafe 
bases its vehicle recognition process on 
a model that’s first trained of"ine and 
then uploaded to the phone and used 
for online vehicle recognition, which 
runs automatically whenever there’s an 
ongoing phone call. WalkSafe activates 
the smartphone’s camera and captures 
video of the surroundings. Each video 
frame is preprocessed to compensate 
for the phone tilt (as shown in Figure 2b) 
and illumination variations, and is then 
analyzed by the decision tree model 
built during the of"ine training phase. If 
the decision tree detects a car in the pic-
ture, it triggers an alert to warn the user  
of possible danger. WalkSafe is able  
to detect when a car is approaching at 
30 miles per hour.

NeuralPhone: A Brain-to-
Smartphone Interface
There’s a growing interest in new hands- 
free interfaces for smartphones based 
on voice and face recognition systems. 
We developed the EyePhone, which lets 
the user select and activate applications 
with the blink of an eye.1 We then won-
dered if a thought could also drive a 
smartphone application—and it turns 
out it can.

Until recently, devices for detect-
ing neural signals were costly, bulky, 
and fragile. We developed the Neural-
Phone, which uses neural signals to 
drive applications on the iPhone using  
inexpensive off-the-shelf wireless electro-
encephalography (EEG) headsets 
(see Figure 3).1 We demonstrated a 
brain-controlled address book dialing 
app, which works like a P300 speller 
designed for brain-computer interfaces. 
The phone flashes a sequence of photos 
of contacts from the address book, and 
a P300 brain potential is elicited when 
the flashed photo matches the person 
whom the user wishes to dial. EEG sig-
nals from the headset are transmitted 
wirelessly to an iPhone, which natively 
runs a lightweight classifier to discrimi-
nate P300 signals from noise. When a 
person’s contact photo triggers a P300, 
his or her phone number is automati-
cally dialed. NeuralPhone breaks new 

Figure 2. The WalkSafe app (a) offers real-time detection of the front and back views of cars, noting when a car is approaching  
or moving away from a user on the phone. (b) Each video frame is preprocessed to compensate for the phone tilt.

(a) (b)
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ground as a brain-to-smartphone inter-
face for pervasive computing.

Community Similarity  
Networks: Big Sensor Data
Big data presents both challenges and 
opportunities. Today, we’re seeing the 
emergence of new mobile health, well-
being, and self-quantification apps 
that can automatically generate large 
numbers of sensor data streams. These 
streams are stored on phones and in the 
cloud for further mining, sharing, and 
visualization.

The BeWell application, for example, 
doesn’t send raw data to back-end serv-
ers; rather, it uploads features, inferences, 
scores, and usability data to the cloud if 
the user opts to store and view longitu-
dinal data. A typical BeWell user will 
upload 20 Mbytes of data per day when 
his or her phone is charging and con-
nected to the Internet. Continuous sens-
ing applications will gain popularity, pro-
ducing terabytes of data that will need to 
be stored and processed in the cloud and 
potentially shared on social networks.

As the user population of smartphone 
sensing apps grows, the differences 

between people will quickly degrade the 
accuracy of the classification system—
we call this the population diversity 
problem.5,6 For example, how a young 
child walks differs greatly from how an 
elderly person walks, so the same model 
can’t be used. To address this problem, 
we developed Community Similar-
ity Networks (CSN), a classification 
system that can be incorporated into 
smartphone sensing apps to address the 
challenge of building robust classifiers 
for diverse populations.

The conventional approach to 
classification in mobile sensing is to 
use the same classification model for 
all users. Using CSN, we construct 
and continuously revise a personal-
ized classification model for each 
user over time. Typically, person-
alized models require all users to 
provide hand-annotated examples  
of them performing certain activities 
while their devices gather sensor data 
(that is, label the data). This is both 
burdensome to the user and wasteful, 
because multiple users often collect 
nearly identical data, yet the training of 
each model occurs in isolation. CSN’s 

key contribution is that it makes the 
personalization of classification mod-
els practical by significantly lowering 
the burden on the user by combining 
crowd-sourced data and leveraging 
networks that measure the similarity 
between users.

Under CSN training, classifiers 
become a networked process in which 
the effort of individual users benefits 
everyone. However, the use of crowd-
sourced data must be done carefully. 
Crowd-sourced data must only selec-
tively be used during training, so the 
resulting model is optimized for the 
person using the model. CSN solves 
this problem by maintaining similar-
ity networks that measure the similar-
ity between people within the broader 
user population. We do this by propos-
ing three different similarity metrics 
(physical, lifestyle/behavioral, and 
purely sensor-data-driven metrics) that 
measure different aspects of interperson 
diversity that influence classifier perfor-
mance. The CSN model training phase 
uses forms of boosting and co-training 
to let these different types of similarity 
each contribute to improving the per-
sonalized classifier’s accuracy.

TOWARD COGNITIVE PHONES
By pushing intelligence to the phone 
in the form of classi!cation models, 
we can infer human behavior and 
context. We can exploit big data to 
build more accurate and robust classi-
!cation systems. Because people carry 
their phone as they navigate through 
the day, phones are well situated to go 
beyond simple inference of classes by 
building up knowledge of the user’s 
life patterns and choices. What if a 
phone could not only build lifelogs 
but also predict outcomes and assist 
the user? We argue the next step in the 
evolution of the phone is the cognitive  
phone.

It’s easy to imagine that the next gen-
eration of mobile health applications 
will not only track the user’s physi-
cal, cognitive, and mental health but 
also use data analytics and prediction  

Figure 3. The NeuralPhone app. It breaks new ground as a brain-to-smartphone interface 
for pervasive computing by letting users dial a smartphone contact via thoughts.
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to model trends in the data. Thus, 
application-speci!c evidence—such as 
progressive social isolation, inactivity, 
and sporadic sleep patterns—could 
help predict the manic and depressive 
phases of someone suffering from a 
serious mental illness, such as a bipolar 
disorder. If the phone could accurately 
predict this change in health, could it 
also intervene to help the patient?

Another example relates to using sen-
sor fusion and prediction on the phone. 
Changes in speech production are one 
of many physiological changes that 
happen during stressful situations. We 
recently developed the StressSense app 
on a quad-core Android phone,7 which 
unobtrusively recognizes stressors from 
the human voice using the smartphone 
microphone. Microphones, embedded 
in mobile phones, provide the oppor-
tunity to continuously and noninva-
sively monitor stress levels in real-life 
situations.

Imagine a cognitive phone capable 
of fusing StressSense output (that is, a 
robust classi!cation of stressors) with 
other phone data such that it could cor-
relate and attribute stressors with peo-
ple, meetings (from your phone’s cal-
endar), your health (correlations with 
BeWell), events (deadlines), and places 
(your manager’s of!ce). Consider, for 
example, that the phone’s calendar 
overlays a simple color code represent-
ing your stress levels so you can visu-
ally understand at a glance what events, 
people, and places in the past—and 
thus likely in the future—aren’t good 
for your mental health. Armed with this 
knowledge, the cognitive phone could 
help you avoid stressful situations by, 
for example, rearranging your calen-
dar to avoid certain people, events, and 
locations. If your phone could under-
stand your DNA, it might also offer 
suggestions to improve your overall 
well-being.

These motivational scenarios align 
with many of the open challenges in AI. 
An enduring dif!culty AI researchers 
face is !guring out how to make systems 
more "exible, adaptable, and extensible.  

The development of cognitive phones 
will require tackling these challenges 
in the domain of human behavior as 
well as providing context recognition 
that works at the population level and 
throughout a user’s lifetime. For exam-
ple, in a mobile phone-based sensing 
app, the human user is always present 
and hence potentially able to provide 
helpful input, such as labels for data. 
However, an intelligent system will use 
this human resource sparingly and only 
when the potential information to be 
gained outweighs the inconvenience of 
interrupting the user.

Similarly, cognitive phones will seek 
to intelligently combine information 
from different sources, not by generic 
data pooling but by leveraging known 
relationships between human behavior 
at the group and individual levels. The 
phone would require a reasoning frame-
work that considers multiple objectives 
and makes different types of decisions  
based on user needs such as whether to 
intervene (in the case of a patient relapse), 
offer a suggestion (perhaps reorganizing 
the user’s calendar based on measured 
stressors), or taking action (such as order-
ing and paying for a latte in advance).

E ach app discussed here pushes intel-
ligence to the phone to infer differ-

ent aspects of human behavior and con-
text. The cellphone’s rapid evolution 
into the smartphone has been breath-
taking; the next evolutionary step should  
realize the cognitive phone.
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